Last edited by Tauzshura
Monday, July 27, 2020 | History

2 edition of Effects of large-scale intermittency of turbulence on scalar spectra at high wave numbers found in the catalog.

Effects of large-scale intermittency of turbulence on scalar spectra at high wave numbers

Reginald J. Hill

Effects of large-scale intermittency of turbulence on scalar spectra at high wave numbers

by Reginald J. Hill

  • 19 Want to read
  • 11 Currently reading

Published by U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories in Boulder, Colo .
Written in English

    Subjects:
  • Scalar field theory.,
  • Atmospheric turbulence.,
  • Reynolds number.

  • Edition Notes

    StatementR.J. Hill.
    SeriesNOAA technical report ERL ; 409. WPL -- 54, NOAA technical report ERL -- 409.., NOAA technical report ERL -- 54..
    ContributionsWave Propagation Laboratory.
    Classifications
    LC ClassificationsU66 no.409
    The Physical Object
    Paginationiii, 19 p. ;
    Number of Pages19
    ID Numbers
    Open LibraryOL17072088M

    large-scale turbulence) within the mixing layer. • POD Modes – Create basis describing relative size, shape, and distribution of large-scale structures within mixing layer. – Using image intensity fluctuation from mean. – Based on snapshot method of Sirovich, • Image Reconstruction. A single-point time record makes it hard to elucidate spatial flow structure, especially large-scale ones like that of VLSMs in turbulent boundary layers or the wave packets of turbulent jets. Much of the cutting-edge experimental work in turbulence is toward use of coherent spatio-temporal structures to form practical flow models.

    Numerical Simulations of Forced Shallow-Water Turbulence: Effects of Moist Convection on the Large-Scale Circulation of Jupiter and Saturn ADAM P. SHOWMAN The University of Arizona, Tucson, Arizona (Manuscript received 15 June , in final form 6 December ) ABSTRACT. T1 - Particle acceleration at a flare termination shock. T2 - Effect of large-scale magnetic turbulence. AU - Guo, Fan. AU - Giacalone, Joe. PY - /7/1. Y1 - /7/1. N2 - We investigate the acceleration of charged particles (both electrons and protons) at collisionless shocks predicted to Cited by:

    • The Madison Dynamo Experiment has shown that the large scale turbulent flows are important in understanding the dynamics of the large scale mean magnetic field • The inhibition of these flows has resulted in a ~60% reduction in turbulent resistivity and a 90% reduction of the turbulent α effect. 15 Tuesday, Measurement of Atmospheric Turbulence by Means of Light, Sound, and Radio Waves The Effects of the Turbulent Atmosphere on Wave Propagation. Israel Program for Scientific Translation, Jerusalem, pp. and B. Balsley, Small-scale and large-scale intermittency in the nocturnal boundary layer and the residual layer. J. Fluid Mech.


Share this book
You might also like
Invariant measure on sums of symmetric matrices and its singularities and zero points

Invariant measure on sums of symmetric matrices and its singularities and zero points

review of the state of fisheries in the Gambia

review of the state of fisheries in the Gambia

Report, including Executive orders nos. 43, 48, 54, 90, 93 and 94, Series of 1947.

Report, including Executive orders nos. 43, 48, 54, 90, 93 and 94, Series of 1947.

Barrons COOP/HSPT/TACHS

Barrons COOP/HSPT/TACHS

Mexico

Mexico

Performance appraisal for productivitiy ... 1984

Performance appraisal for productivitiy ... 1984

Introduction to Internal Combustion Engines

Introduction to Internal Combustion Engines

How/Now

How/Now

Raoul Dufy

Raoul Dufy

The motoring Edwardians

The motoring Edwardians

Financial Accounting With E-study Cd 9th Edition Plus Financial Accounting Working Papers 9th Edition

Financial Accounting With E-study Cd 9th Edition Plus Financial Accounting Working Papers 9th Edition

Expert systems applications for the electric power industry

Expert systems applications for the electric power industry

Lives and letters

Lives and letters

Effects of large-scale intermittency of turbulence on scalar spectra at high wave numbers by Reginald J. Hill Download PDF EPUB FB2

Effects of large-scale intermittency of turbulence on scalar spectra at high wave numbers. Boulder, Colo.: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, (OCoLC) Material Type: Government publication, National government publication, Internet resource: Document Type.

On a Symmetry of Turbulence. Effects of large-scale intermittency of turbulence on scalar spectra at high wave numbers rate intermittency on the shape of the high wave number portion of. Possible Effects of Small-Scale Intermittency in Turbulent Reacting Flows Article in Flow Turbulence and Combustion 72() June with 11 Reads How we measure 'reads'.

Large-scale intermittency and rare events boosted at dimensional crossover in anisotropic turbulence Ryo Onishi1, Keiko Takahasi1*, Koji Goto2, Masatoshi Imada3* Affiliations: 1Center for Earth Information Science and Technology, Japan Agency for Marine-earth Science and Technology, Showa-machi, Kanazawa-ku, Yokohama: Keiko Takahashi, Koji Goto, Ryo Onishi, Masatoshi Imada.

High-resolution spatial and temporal measurements have revealed small-scale intermittency in many phenomena, such as the dissipation of energy in the atmosphere or the ocean [4, 5], the rain formation process, superfluid turbulence, and the solar : Annick Pouquet.

Mydlarski L (), Mixed velocity-passive scalar statistics in high-Reynolds-number turbulence, J. Fluid Mech. (to appear). Xu G (), Small-scale measurements in turbulent shear flows, PhD Thesis, University of by: Turbulence is commonly observed in everyday phenomena such as surf, fast flowing rivers, billowing storm clouds, or smoke from a chimney, and most fluid flows occurring in nature or created in engineering applications are turbulent.

Turbulence is caused by excessive kinetic energy in parts of a fluid flow, which overcomes the damping effect of. Effects of Freestream Turbulence, Turbulence Length Scale, and Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade Preface The combustion temperature of gas turbine engines continue to increase in order to get a higher work output and higher efficiency from gas turbine engines.

To handle the high. Engineering Turbulence Modelling and Experiments 6 leading to reduced SGS dependency and improved predictions of the noise spectra in the high frequency domain. The flow field and aerodynamic noise caused by a NACA blade with a tip in an incident flow is simulated.

A large-scale unsteady compressible LES combined with direct noise. The question of how wall turbulence changes at high Reynolds numbers has received heightened interest over the last decade or so.

This has resulted in the construction or planning of high Reynolds number facilities, including the Princeton Superpipe (Zagarola and Smits, ), the development of SLTEST, an atmospheric test facility in the Great Salt Lake Desert, Utah (Klewicki et al., Cited by: Large-scale flow effects, energy transfer, and self-similarity on turbulence P.

Mininni, A. Alexakis, and A. Pouquet NCAR, P.O. BoxBoulder, ColoradoUSA Received 21 February ; published 17 July The effect of large scales on the statistics and dynamics of turbulent fluctuations is studied using data from.

Scaling Laws and Intermittency in Highly Compressible Turbulence Alexei G. Kritsuk potheses of K41 were then revisited and refined to account for intermittency effects [5, 6, 7]. While the K41 phenomenology became the cornerstone for all subsequent de- Notice strong bottleneck contamination in the spectra at high wavenumbers.

Turbulence in a box: quantification of large-scale resolution effects in isotropic turbulence free decay - Volume - M. Meldi, P. SagautCited by: 8. Failure to recognize the importance of the finite Reynolds number effect on small scale turbulence has, by and large, resulted in misguided assessments of the first two hypotheses of Kolmogorov [“Local structure of turbulence in an incompressible fluid for very large Reynolds numbers,” Dokl.

Akad. Nauk S – ()] or K41 as well as his third hypothesis [A. Kolmogorov Cited by: Passive scalar turbulence has recently yielded to mathematical analysis, and such progress may ultimately lead to a better understanding of the still intractable problem of fluid turbulence itself.

large-scale energy input than inertial range scaling coefficients. Key words: homogeneous turbulence, intermittency, turbulent flows 1. Introduction. One of the earliest recognitions of the importance of fluctuations in the energy dissipation rate in turbulence can be found in a footnote by Landau in the Cited by: 7.

Results of a wind tunnel experiment in which there are systematic variations of free stream turbulence above a flat-plate boundary layer are presented.

Upstream of the plate, an active grid generates free stream turbulence varying in intensity from % to %. The momentum thickness Reynolds number of the boundary layer varies from to nearly Cited by: Theory of turbulence at small scales plays a fundamental role in modeling turbulence and in retrieving information from physical measurements of turbulent flows.

A systematic methodology based on direct numerical simulations of turbulent flows is developed to investigate universality of small scale turbulence. Understanding characteristics of the small scale intermittency in turbulent flows Author: Saba Almalkie.

Physics Stack Exchange is a question and answer site for active researchers, academics and students of physics. Calculating Length Scales from Passive Scalar Field. Strong and weak turbulence. How are the turbulent spectra determined in relativistic turbulence.

the turbulence grid for the high inlet turbulence cases. The incidence angles that are presented apply to the take-off and cruise conditions for the VSPT project.5 The blades and their nominal inlet flow vectors are shown in Figure 2.

As shown in Figure 1, a turbulence grid was installed upstream of the blade row to generate high inlet turbulenceCited by: 1. Numerical study of small-scale intermittency in three-dimensional turbulence By ERIC D. SIGGIA Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New Yorkand National Center for Atmospheric Research, P.O.

BoxBoulder, Colorado (Received 2 October and in revised form 27 August ).O(), highlight promising applications of the refined model to high-Reynolds-number flows, in which coherent scales become the primary contributor to the fluctuating energy.

DOI: /PhysRevFluids I. INTRODUCTION Large-scale coherence in high-Reynolds-number wall turbulence has been evidenced by flow.Given the Reynolds number effects observed for single point statistics, the aim of the present work is to extend the scale energy analysis conducted by Marati et s¼ to higher Reyn-olds numbers.2 Thus, the scale energy dynamics are examined using DNS data of turbulent chan-nel flows at Re s¼,and in this study.

Details.